Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Chim Acta ; 541: 117243, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2306100

ABSTRACT

Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.


Subject(s)
Antigens, CD , Virus Diseases , Humans , Antigens, CD/genetics , Receptors, Cell Surface/genetics , Inflammation , Biomarkers
2.
Sci Rep ; 12(1): 4058, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004786

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key host protein by which severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters and multiplies within cells. The level of ACE2 expression in the lung is hypothesised to correlate with an increased risk of severe infection and complications in COrona VIrus Disease 2019 (COVID-19). To test this hypothesis, we compared the protein expression status of ACE2 by immunohistochemistry (IHC) in post-mortem lung samples of patients who died of severe COVID-19 and lung samples obtained from non-COVID-19 patients for other indications. IHC for CD61 and CD163 was performed for the assessment of platelet-rich microthrombi and macrophages, respectively. IHC for SARS-CoV-2 viral antigen was also performed. In a total of 55, 44 COVID-19 post-mortem lung samples were tested for ACE2, 36 for CD163, and 26 for CD61, compared to 15 non-covid 19 control lung sections. Quantification of immunostaining, random sampling, and correlation analysis were used to substantiate the morphologic findings. Our results show that ACE2 protein expression was significantly higher in COVID-19 post-mortem lung tissues than in controls, regardless of sample size. Histomorphology in COVID-19 lungs showed diffuse alveolar damage (DAD), acute bronchopneumonia, and acute lung injury with SARS-CoV-2 viral protein detected in a subset of cases. ACE2 expression levels were positively correlated with increased expression levels of CD61 and CD163. In conclusion, our results show significantly higher ACE2 protein expression in severe COVID-19 disease, correlating with increased macrophage infiltration and microthrombi, suggesting a pathobiological role in disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , COVID-19/virology , Case-Control Studies , Female , Humans , Immunohistochemistry , Integrin beta3/genetics , Integrin beta3/metabolism , Lung/pathology , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
3.
J Med Virol ; 94(10): 4803-4808, 2022 10.
Article in English | MEDLINE | ID: covidwho-1894607

ABSTRACT

The development of cardiovascular disease shows increase after contracting coronavirus 2019 (COVID-19) disease and myocardial damage is observed in patients who have had the disease severely. The relationship between genetic cardiovascular risk factors with COVID-19 infection was investigated in our study. One hundred thirty-five patients, 27 of whom were COVID-19 (-) and 108 were COVID-19 (+) patients, were included in the study. Patients were divided into three groups ([COVID-19 [-], COVID-19 [+] asymptomatic, and COVID-19 [+] symptomatic + patients with pulmonary involvement]). Genetic cardiovascular risk factors were examined in blood samples taken from the patients with new generation sequencing analysis. In the clinical classification, there were no significant differences between the three groups in fibrinogen beta chain-455G>A, human platelet antigen 1 (HPA1b)/platelet receptor GPIIIa/(ITGB3) (HPA1a/b; GpIIIa; integrin beta 3 L33P), ACE I/D, AGT (M268T), AGTR1 (1166A>C), Apo E (E2/E3/E4) (rs7412, rs429358), eNOS (786T>C), eNOS (894G>T) genes (p > 0.05). However, significant differences were observed in PROCR H3 haplotype/G (endothelial protein C receptor gene [EPCR] 4600A>G [A3 haplotype]), PROCR H1 haplotype/C (EPCR 4678G>C [A1 haplotype]) genes (p < 0.05). When COVID-19 (+) and COVID-19 (-) groups were compared, it was observed that the infection was more common in people with PROCR H1 haplotype/C and PROCR H3 haplotype/G genotypes (p < 0.05). PROCR H1 and PROCR H3 haplotypes may be an important factor in contracting COVID-19 disease. In people with COVID-19 disease, revealing PROCR genetic differences and measuring sEPCR levels will be beneficial in the follow-up of the disease.


Subject(s)
COVID-19 , Endothelial Protein C Receptor , Integrin beta3 , Antigens, CD/genetics , COVID-19/epidemiology , COVID-19/genetics , Endothelial Protein C Receptor/genetics , Haplotypes , Humans , Integrin beta3/genetics , Receptors, Cell Surface
4.
Front Cell Infect Microbiol ; 12: 798767, 2022.
Article in English | MEDLINE | ID: covidwho-1862592

ABSTRACT

COVID-19 is the biggest pandemic the world has seen this century. Alongside the respiratory damage observed in patients with severe forms of the disease, gastrointestinal symptoms have been frequently reported. These symptoms (e.g., diarrhoea), sometimes precede the development of respiratory tract illnesses, as if the digestive tract was a major target during early SARS-CoV-2 dissemination. We hypothesize that in patients carrying intestinal SARS-CoV-2, the virus may trigger epithelial barrier damage through the disruption of E-cadherin (E-cad) adherens junctions, thereby contributing to the overall gastrointestinal symptoms of COVID-19. Here, we use an intestinal Caco-2 cell line of human origin which expresses the viral receptor/co-receptor as well as the membrane anchored cell surface adhesion protein E-cad to investigate the expression of E-cad after exposure to SARS-CoV-2. We found that the expression of CDH1/E-cad mRNA was significantly lower in cells infected with SARS-CoV-2 at 24 hours post-infection, compared to virus-free Caco-2 cells. The viral receptor ACE2 mRNA expression was specifically down-regulated in SARS-CoV-2-infected Caco-2 cells, while it remained stable in HCoV-OC43-infected Caco-2 cells, a virus which uses HLA class I instead of ACE2 to enter cells. It is worth noting that SARS-CoV-2 induces lower transcription of TMPRSS2 (involved in viral entry) and higher expression of B0AT1 mRNA (that encodes a protein known to co-express with ACE2 on intestinal cells). At 48 hours post-exposure to the virus, we also detected a small but significant increase of soluble E-cad protein (sE-cad) in the culture supernatant of SARS-CoV-2-infected Caco-2 cells. The increase of sE-cad release was also found in the intestinal HT29 cell line when infected by SARS-CoV-2. Beside the dysregulation of E-cad, SARS-CoV-2 infection of Caco-2 cells also leads to the dysregulation of other cell adhesion proteins (occludin, JAMA-A, zonulin, connexin-43 and PECAM-1). Taken together, these results shed light on the fact that infection of Caco-2 cells with SARS-CoV-2 affects tight-, adherens-, and gap-junctions. Moreover, intestinal tissues damage was associated to the intranasal SARS-CoV-2 infection in human ACE2 transgenic mice.


Subject(s)
COVID-19 , Cadherins , Gastrointestinal Diseases , Angiotensin-Converting Enzyme 2/genetics , Animals , Antigens, CD/genetics , Caco-2 Cells , Cadherins/genetics , Gene Expression , Humans , Mice , RNA, Messenger , Receptors, Virus/genetics , SARS-CoV-2/genetics
5.
J Mol Cell Biol ; 13(10): 748-759, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1483467

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global public health crisis. Some patients who have recovered from COVID-19 subsequently test positive again for SARS-CoV-2 RNA after discharge from hospital. How such retest-positive (RTP) patients become infected again is not known. In this study, 30 RTP patients, 20 convalescent patients, and 20 healthy controls were enrolled for the analysis of immunological characteristics of their peripheral blood mononuclear cells. We found that absolute numbers of CD4+ T cells, CD8+ T cells, and natural killer cells were not substantially decreased in RTP patients, but the expression of activation markers on these cells was significantly reduced. The percentage of granzyme B-producing T cells was also lower in RTP patients than in convalescent patients. Through transcriptome sequencing, we demonstrated that high expression of inhibitor of differentiation 1 (ID1) and low expression of interferon-induced transmembrane protein 10 (IFITM10) were associated with insufficient activation of immune cells and the occurrence of RTP. These findings provide insight into the impaired immune function associated with COVID-19 and the pathogenesis of RTP, which may contribute to a better understanding of the mechanisms underlying RTP.


Subject(s)
COVID-19/immunology , Convalescence , Reinfection/immunology , SARS-CoV-2/immunology , Transcriptome/immunology , Adult , Aged , Aged, 80 and over , Antigens, CD/genetics , Antigens, CD/immunology , COVID-19/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Case-Control Studies , Female , Healthy Volunteers , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/immunology , Male , Middle Aged , Patient Readmission , RNA, Viral/isolation & purification , Reinfection/genetics , Reinfection/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult , Lymphocyte Activation Gene 3 Protein
6.
J Med Virol ; 93(2): 760-765, 2021 02.
Article in English | MEDLINE | ID: covidwho-1196398

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 emerged in China in December 2019 and then rapidly spread worldwide. Why COVID-19 patients with the same clinical condition have different outcomes remains unclear. This study aimed to examine the differences in the phenotype and functions of major populations of immune cells between COVID-19 patients with same severity but different outcomes. Four common type adult inpatients with laboratory confirmed COVID-19 from Beijing YouAn Hospital, Capital Medical University were included in this study. The patients were divided into two groups based on whether or not COVID-19 polymerase chain reaction (PCR)-negative conversion occurred within 3 weeks. Peripheral blood samples were collected to compare the differences in the phenotype and functions of major populations of immune cells between the two groups of patients. The result shows that the proportions of CD3+ CD8+ CD38+ HLA-DR+ CD27- effector T killer cells generally declined, whereas that of CD3+ CD4+ CD8+ double-positive T cells (DPTs) increased in the persistently PCR-positive patients. In summary, considering the imbalance between effector T killer cells/CD3+CD4+CD8+ DPTs was a possible key factor for PCR-negative conversion in patients with COVID-19.


Subject(s)
Biological Variation, Individual , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Natural Killer T-Cells/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Testing , Female , Gene Expression , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Lymphocyte Count , Male , Middle Aged , Natural Killer T-Cells/virology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Severity of Illness Index
7.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1179919

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
8.
Front Immunol ; 12: 650331, 2021.
Article in English | MEDLINE | ID: covidwho-1156125

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production-effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , COVID-19/immunology , Eosinophils/immunology , Lectins/immunology , Mast Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , Toll-Like Receptors/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Cytokines/metabolism , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/virology , Host-Pathogen Interactions , Humans , Lectins/antagonists & inhibitors , Lectins/genetics , Lectins/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/virology , Mice, Transgenic , Peptide Hydrolases/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Toll-Like Receptors/metabolism
9.
Clin Immunol ; 222: 108630, 2021 01.
Article in English | MEDLINE | ID: covidwho-921852

ABSTRACT

BACKGROUND: NK cells seem to be mainly involved in COVID-19 pneumonia. Little is known about NKT cells which represent a bridge between innate and adaptive immunity. METHODS: We characterized peripheral blood T, NK and NKT cells in 45 patients with COVID-19 pneumonia (COVID-19 subjects) and 19 healthy donors (HDs). According to the severity of the disease, we stratified COVID-19 subjects into severe and non-severe groups. RESULTS: Compared to HDs, COVID-19 subjects showed higher percentages of NK CD57+ and CD56dim NK cells and lower percentages of NKT and CD56bright cells. In the severe group we found a significantly lower percentage of NKT cells. In a multiple logistic regression analysis, NKT cell was independently associated with the severity of the disease. CONCLUSIONS: The low percentage of NKT cells in peripheral blood of COVID-19 subjects and the independent association with the severity of the disease suggests a potential role of this subset.


Subject(s)
COVID-19/pathology , Natural Killer T-Cells/physiology , SARS-CoV-2 , Aged , Aged, 80 and over , Antigens, CD/genetics , Antigens, CD/metabolism , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Natural Killer T-Cells/classification , Natural Killer T-Cells/metabolism
11.
Elife ; 92020 09 02.
Article in English | MEDLINE | ID: covidwho-740561

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) and transmissible gastroenteritis virus (TGEV) are two highly infectious and lethal viruses causing major economic losses to pig production. Here, we report generation of double-gene-knockout (DKO) pigs harboring edited knockout alleles for known receptor proteins CD163 and pAPN and show that DKO pigs are completely resistant to genotype 2 PRRSV and TGEV. We found no differences in meat-production or reproductive-performance traits between wild-type and DKO pigs, but detected increased iron in DKO muscle. Additional infection challenge experiments showed that DKO pigs exhibited decreased susceptibility to porcine deltacoronavirus (PDCoV), thus offering unprecedented in vivo evidence of pAPN as one of PDCoV receptors. Beyond showing that multiple gene edits can be combined in a livestock animal to achieve simultaneous resistance to two major viruses, our study introduces a valuable model for investigating infection mechanisms of porcine pathogenic viruses that exploit pAPN or CD163 for entry.


Pig epidemics are the biggest threat to the pork industry. In 2019 alone, hundreds of billions of dollars worldwide were lost due to various pig diseases, many of them caused by viruses. The porcine reproductive and respiratory virus (PRRS virus for short), for instance, leads to reproductive disorders such as stillbirths and premature labor. Two coronaviruses ­ the transmissible gastroenteritis virus (or TGEV) and the porcine delta coronavirus ­ cause deadly diarrhea and could potentially cross over into humans. Unfortunately, there are still no safe and effective methods to prevent or control these pig illnesses, but growing disease-resistant pigs could reduce both financial and animal losses. Traditionally, breeding pigs to have a particular trait is a slow process that can take many years. But with gene editing technology, it is possible to change or remove specific genes in a single generation of animals. When viruses infect a host, they use certain proteins on the surface of the host's cells to find their inside: the PRRS virus relies a protein called CD163, and TGEV uses pAPN. Xu, Zhou, Mu et al. used gene editing technology to delete the genes that encode the CD163 and pAPN proteins in pigs. When the animals were infected with PRRS virus or TGEV, the non-edited pigs got sick but the gene-edited animals remained healthy. Unexpectedly, pigs without CD163 and pAPN also coped better with porcine delta coronavirus infections, suggesting that CD163 and pAPN may also help this coronavirus infect cells. Finally, the gene-edited pigs reproduced and produced meat as well as the control pigs. These experiments show that gene editing can be a powerful technology for producing animals with desirable traits. The gene-edited pigs also provide new knowledge about how porcine viruses infect pigs, and may offer a starting point to breed disease-resistant animals on a larger scale.


Subject(s)
CD13 Antigens/deficiency , Coronavirus Infections/prevention & control , Coronavirus/pathogenicity , Gastroenteritis, Transmissible, of Swine/prevention & control , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/pathogenicity , Receptors, Cell Surface/deficiency , Transmissible gastroenteritis virus/pathogenicity , Animals , Animals, Genetically Modified , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Body Composition , CD13 Antigens/genetics , CD13 Antigens/immunology , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Susceptibility , Gastroenteritis, Transmissible, of Swine/genetics , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/virology , Gene Knockdown Techniques , Host Microbial Interactions , Meat-Packing Industry , Phenotype , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Sus scrofa/genetics , Swine , Transmissible gastroenteritis virus/immunology , Weight Gain
12.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Article in English | MEDLINE | ID: covidwho-710376

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon Type I/metabolism , Pneumonia, Viral/immunology , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL